国产成人精品在线-国产成人精品综合-国产成人精品综合久久久-国产成人精品综合在线-天天做日日爱夜夜爽-天天做日日干

上海 江蘇 浙江 安徽 PCB培訓 郵箱登陸 聯系我們
緯亞聯系電話:0512-57933566
高速PCB設計指引(二)服務

聯系我們

昆山緯亞PCB生產基地聯系方式
昆山緯亞智能科技有限公司

公司地址:昆山市周市鎮宋家港路259號
公司電話Tel:0512-50139595
電子郵件Email: steven@pcbvia.com

首頁  技術支持  資料中心高速PCB設計指引(二)

高速PCB設計指引(二)

發布時間:2016-07-26 08:16:48 分類:資料中心

 三篇 高速PCB設計

(一)、電子系統設計所面臨的挑戰

    隨著系統設計復雜性和集成度的大規模提高,電子系統設計師們正在從事100MHZ以上的電路設計,總線的工作頻率也已經達到或者超過50MHZ,有的甚至超過100MHZ。目前約50% 的設計的時鐘頻率超過50MHz,將近20% 的設計主頻超過120MHz。

    當系統工作在50MHz時,將產生傳輸線效應和信號的完整性問題;而當系統時鐘達到120MHz時,除非使用高速電路設計知識,否則基于傳統方法設計的PCB將無法工作。因此,高速電路設計技術已經成為電子系統設計師必須采取的設計手段。只有通過使用高速電路設計師的設計技術,才能實現設計過程的可控性。

(二)、什么是高速電路

    通常認為如果數字邏輯電路的頻率達到或者超過45MHZ~50MHZ,而且工作在這個頻率之上的電路已經占到了整個電子系統一定的份量(比如說1/3),就稱為高速電路。

    實際上,信號邊沿的諧波頻率比信號本身的頻率高,是信號快速變化的上升沿與下降沿(或稱信號的跳變)引發了信號傳輸的非預期結果。因此,通常約定如果線傳播延時大于1/2數字信號驅動端的上升時間,則認為此類信號是高速信號并產生傳輸線效應。

    信號的傳遞發生在信號狀態改變的瞬間,如上升或下降時間。信號從驅動端到接收端經過一段固定的時間,如果傳輸時間小于1/2的上升或下降時間,那么來自接收端的反射信號將在信號改變狀態之前到達驅動端。反之,反射信號將在信號改變狀態之后到達驅動端。如果反射信號很強,疊加的波形就有可能會改變邏輯狀態。

(三)、高速信號的確定

  上面我們定義了傳輸線效應發生的前提條件,但是如何得知線延時是否大于 1/2驅動端的信號上升時間?一般地,信號上升時間的典型值可通過器件手冊給出,而信號的傳播時間在PCB設計中由實際布線長度決定。下圖為信號上升時間和允許的布線長度(延時)的對應關系。

    PCB 板上每單位英寸的延時為 0.167ns.。但是,如果過孔多,器件管腳多,網線上設置的約束多,延時將增大。通常高速邏輯器件的信號上升時間大約為0.2ns。如果板上有GaAs芯片,則大布線長度為7.62mm。 

    設Tr 為信號上升時間, Tpd 為信號線傳播延時。如果Tr≥4Tpd,信號落在安全區域。如果2Tpd≥Tr≥4Tpd,信號落在不確定區域。如果Tr≤2Tpd,信號落在問題區域。對于落在不確定區域及問題區域的信號,應該使用高速布線方法。 

(四)、什么是傳輸線

    PCB板上的走線可等效為下圖所示的串聯和并聯的電容、電阻和電感結構。串聯電阻的典型值0.25-0.55 ohms/foot,因為絕緣層的緣故,并聯電阻阻值通常很高。將寄生電阻、電容和電感加到實際的PCB連線中之后,連線上的終阻抗稱為特征阻抗Zo。線徑越寬,距電源/地越近,或隔離層的介電常數越高,特征阻抗就越小。如果傳輸線和接收端的阻抗不匹配,那么輸出的電流信號和信號終的穩定狀態將不同,這就引起信號在接收端產生反射,這個反射信號將傳回信號發射端并再次反射回來。隨著能量的減弱反射信號的幅度將減小,直到信號的電壓和電流達到穩定。這種效應被稱為振蕩,信號的振蕩在信號的上升沿和下降沿經常可以看到。

(五)、傳輸線效應

基于上述定義的傳輸線模型,歸納起來,傳輸線會對整個電路設計帶來以下效應。

· 反射信號Reflected signals
· 延時和時序錯誤Delay & Timing errors
· 多次跨越邏輯電平門限錯誤False Switching
· 過沖與下沖Overshoot/Undershoot
· 串擾Induced Noise (or crosstalk)
· 電磁輻射EMI radiation

5.1 反射信號

    如果一根走線沒有被正確終結(終端匹配),那么來自于驅動端的信號脈沖在接收端被反射,從而引發不預期效應,使信號輪廓失真。當失真變形非常顯著時可導致多種錯誤,引起設計失敗。同時,失真變形的信號對噪聲的敏感性增加了,也會引起設計失敗。如果上述情況沒有被足夠考慮,EMI將顯著增加,這就不單單影響自身設計結果,還會造成整個系統的失敗。

    反射信號產生的主要原因:過長的走線;未被匹配終結的傳輸線,過量電容或電感以及阻抗失配。 

5.2 延時和時序錯誤

    信號延時和時序錯誤表現為:信號在邏輯電平的高與低門限之間變化時保持一段時間信號不跳變。過多的信號延時可能導致時序錯誤和器件功能的混亂。

  通常在有多個接收端時會出現問題。電路設計師必須確定壞情況下的時間延時以確保設計的正確性。信號延時產生的原因:驅動過載,走線過長。 

5.3 多次跨越邏輯電平門限錯誤

    信號在跳變的過程中可能多次跨越邏輯電平門限從而導致這一類型的錯誤。多次跨越邏輯電平門限錯誤是信號振蕩的一種特殊的形式,即信號的振蕩發生在邏輯電平門限附近,多次跨越邏輯電平門限會導致邏輯功能紊亂。反射信號產生的原因:過長的走線,未被終結的傳輸線,過量電容或電感以及阻抗失配。 

5.4 過沖與下沖 

    過沖與下沖來源于走線過長或者信號變化太快兩方面的原因。雖然大多數元件接收端有輸入保護二極管保護,但有時這些過沖電平會遠遠超過元件電源電壓范圍,損壞元器件。 

5.5 串擾

    串擾表現為在一根信號線上有信號通過時,在PCB板上與之相鄰的信號線上就會感應出相關的信號,我們稱之為串擾。

    信號線距離地線越近,線間距越大,產生的串擾信號越小。異步信號和時鐘信號更容易產生串擾。因此解串擾的方法是移開發生串擾的信號或屏蔽被嚴重干擾的信號。

5.6 電磁輻射

    EMI(Electro-Magnetic Interference)即電磁干擾,產生的問題包含過量的電磁輻射及對電磁輻射的敏感性兩方面。EMI表現為當數字系統加電運行時,會對周圍環境輻射電磁波,從而干擾周圍環境中電子設備的正常工作。它產生的主要原因是電路工作頻率太高以及布局布線不合理。目前已有進行 EMI仿真的軟件工具,但EMI仿真器都很昂貴,仿真參數和邊界條件設置又很困難,這將直接影響仿真結果的準確性和實用性。通常的做法是將控制EMI的各項設計規則應用在設計的每一環節,實現在設計各環節上的規則驅動和控制。所有這些都需要靠經驗來實現。實際上,在高速電路設計方面,有很多基礎理論都存在

(六)、避免傳輸線效應的方法

    針對上述傳輸線問題所引入的影響,我們從以下幾方面談談控制這些影響的方法。

6.1 嚴格控制關鍵網線的走線長度

    如果設計中有高速跳變的邊沿,就必須考慮到在PCB板上存在傳輸線效應的問題。現在普遍使用的很高時鐘頻率的快速集成電路芯片更是存在這樣的問題。解決這個問題有一些基本原則:如果采用CMOS或TTL電路進行設計,工作頻率小于10MHz,布線長度應不大于7英寸。工作頻率在50MHz布線長度應不大于1.5英寸。如果工作頻率達到或超過75MHz布線長度應在1英寸。對于GaAs芯片大的布線長度應為0.3英寸。如果超過這個標準,就存在傳輸線的問題。

6.2 合理規劃走線的拓撲結構

    解決傳輸線效應的另一個方法是選擇正確的布線路徑和終端拓撲結構。走線的拓撲結構是指一根網線的布線順序及布線結構。當使用高速邏輯器件時,除非走線分支長度保持很短,否則邊沿快速變化的信號將被信號主干走線上的分支走線所扭曲。通常情形下,PCB走線采用兩種基本拓撲結構,即菊花鏈(Daisy Chain)布線和星形(Star)分布。

    對于菊花鏈布線,布線從驅動端開始,依次到達各接收端。如果使用串聯電阻來改變信號特性,串聯電阻的位置應該緊靠驅動端。在控制走線的高次諧波干擾方面,菊花鏈走線效果好。但這種走線方式布通率低,不容易100%布通。實際設計中,我們是使菊花鏈布線中分支長度盡可能短,安全的長度值應該是:Stub Delay <= Trt *0.1.

    例如,高速TTL電路中的分支端長度應小于1.5英寸。這種拓撲結構占用的布線空間較小并可用單一電阻匹配終結。但是這種走線結構使得在不同的信號接收端信號的接收是不同步的。

    星形拓撲結構可以有效的避免時鐘信號的不同步問題,但在密度很高的PCB板上手工完成布線十分困難。采用自動布線器是完成星型布線的好的方法。每條分支上都需要終端電阻。終端電阻的阻值應和連線的特征阻抗相匹配。這可通過手工計算,也可通過CAD工具計算出特征阻抗值和終端匹配電阻值。 

    在上面的兩個例子中使用了簡單的終端電阻,實際中可選擇使用更復雜的匹配終端。一種選擇是RC匹配終端。RC匹配終端可以減少功率消耗,但只能使用于信號工作比較穩定的情況。這種方式適合于對時鐘線信號進行匹配處理。其缺點是RC匹配終端中的電容可能影響信號的形狀和傳播速度。

    串聯電阻匹配終端不會產生額外的功率消耗,但會減慢信號的傳輸。這種方式用于時間延遲影響不大的總線驅動電路。串聯電阻匹配終端的優勢還在于可以減少板上器件的使用數量和連線密度。

    后一種方式為分離匹配終端,這種方式匹配元件需要放置在接收端附近。其優點是不會拉低信號,并且可以很好的避免噪聲。典型的用于TTL輸入信號(ACT, HCT, FAST)。

  此外,對于終端匹配電阻的封裝型式和安裝型式也必須考慮。通常SMD表面貼裝電阻比通孔元件具有較低的電感,所以SMD封裝元件成為首選。如果選擇普通直插電阻也有兩種安裝方式可選:垂直方式和水平方式。

  垂直安裝方式中電阻的一條安裝管腳很短,可以減少電阻和電路板間的熱阻,使電阻的熱量更加容易散發到空氣中。但較長的垂直安裝會增加電阻的電感。水平安裝方式因安裝較低有更低的電感。但過熱的電阻會出現漂移,在壞的情況下電阻成為開路,造成PCB走線終結匹配失效,成為潛在的失敗因素。 

6.3 抑止電磁干擾的方法

  很好地解決信號完整性問題將改善PCB板的電磁兼容性(EMC)。其中非常重要的是保證PCB板有很好的接地。對復雜的設計采用一個信號層配一個地線層是十分有效的方法。此外,使電路板的外層信號的密度小也是減少電磁輻射的好方法,這種方法可采用"表面積層"技術"Build-up"設計制做PCB來實現。表面積層通過在普通工藝 PCB 上增加薄絕緣層和用于貫穿這些層的微孔的組合來實現 ,電阻和電容可埋在表層下,單位面積上的走線密度會增加近一倍,因而可降低 PCB的體積。PCB 面積的縮小對走線的拓撲結構有巨大的影響,這意味著縮小的電流回路,縮小的分支走線長度,而電磁輻射近似正比于電流回路的面積;同時小體積特征意味著高密度引腳封裝器件可以被使用,這又使得連線長度下降,從而電流回路減小,提高電磁兼容特性。

6.4 其它可采用技術

  為減小集成電路芯片電源上的電壓瞬時過沖,應該為集成電路芯片添加去耦電容。這可以有效去除電源上的毛刺的影響并減少在印制板上的電源環路的輻射。

  當去耦電容直接連接在集成電路的電源管腿上而不是連接在電源層上時,其平滑毛刺的效果好。這就是為什么有一些器件插座上帶有去耦電容,而有的器件要求去耦電容距器件的距離要足夠的小。

    任何高速和高功耗的器件應盡量放置在一起以減少電源電壓瞬時過沖。
如果沒有電源層,那么長的電源連線會在信號和回路間形成環路,成為輻射源和易感應電路。

    走線構成一個不穿過同一網線或其它走線的環路的情況稱為開環。如果環路穿過同一網線其它走線則構成閉環。兩種情況都會形成天線效應(線天線和環形天線)。天線對外產生EMI輻射,同時自身也是敏感電路。閉環是一個必須考慮的問題,因為它產生的輻射與閉環面積近似成正比。

結束語

高速電路設計是一個非常復雜的設計過程,本文所闡述的只是一些常用的方法。此外,在進行高速電路設計時還有許多因素需要加以考慮,這些因素有時互相對立。如高速器件布局時位置靠近,雖可以減少延時,但可能產生串擾和顯著的熱效應。因此在設計中,需權衡各因素,做出全面的折衷考慮;既滿足設計要求,又降低設計復雜度,所有這些都需要靈活處理。

實際上,在高速電路設計方面,有很多基礎理論還存在爭議,許多計算公式都是通過實驗得來的經驗公式。在實際產品開發過程中,經驗就顯得尤其重要,它不但為你節省了大量的開發成本,而且為產品的可靠性提供了有力的保證!

來源:高速PCB設計指引(二)

瀏覽"高速PCB設計指引(二)"的人還關注了

版權所有:昆山緯亞電子科技有限公司      技術支持:李麟
欧美极品少妇XXXXⅩ| 精品一区二区三区国产在线观看| 亚洲AV日韩AⅤ无码色老头| 精品综合久久久久久97| 中文字幕女人妻热女人妻| 日本COSME大赏美白| 国产黄在线观看免费观看不卡| 亚洲AV无码专区在线| 老头巨大挺进莹莹的体内免费视频| CHINA真实VIDEOS另类| 双胞胎一前一后夹心饼干年下| 国内精品乱码卡一卡2卡三卡新区| 一本一道人人妻人人妻| 强伦姧人妻三上悠亚中文字幕| 国产成人啪精品视频免费软件| 亚洲第一综合天堂另类专| 美女露胸 0无挡挡| 成人区人妻精品一区二区不卡网站| 午夜影视免费观看2023| 久久无码高潮喷水免费看| А√天堂资源地址在线官网| 无码国产孕妇一区二区免费AV| 久久精品国产2020观看福利| AV影音先锋天堂网| 无码加勒比一区二区三区四区| 久久国产乱子精品免费女| JLZZJLZZ亚洲| 性色AV无码中文AV有码VR| 久久综合亚洲色一区二区三区| 成人免费A级毛片久久| 亚洲AV中文无码乱人伦在线视色 | 国内精品宾馆在线精品酒店| 中文一国产一无码一日韩| 少妇被粗大的猛烈进出96影院| 精品国产三级A∨在线观看| CHINESE农村老妓女| 西西人体444WWW大胆无码视频| 狼人在线二线三线区别大吗| 丰满熟妇岳AV无码区HD| 亚洲熟妇无码AV另类VR影视| 日本三级香港三级人妇99| 娇妻系列交换27部多P小| MATUREHDHQ成熟| 亚洲AV无码专区国产乱码不卡| 欧美成本人网站免费观看| 国产精品天干天干在线观看| 中文字幕乱人伦高清视频| 未满十八岁的请自动离开| 可以差差差的视频无掩盖| 公粗挺进了我的密道在线观看| 亚洲综合久久精品无码色欲| 色婷婷AV一区二区三区4k岛国| 久久精品无码一区二区软件| 粗大的内捧猛烈进出动态图| 亚洲一区二区三区AV无码| 色猫咪AV在线网址| 久久久亚洲熟妇熟女ⅩXXXHD| 非洲黄网站黑人美女日比群交视频| 亚洲熟妇无码一区二区三区| 涩反差合集91综合一区二区清纯| 久久天堂综合亚洲伊人HD妓女| 国产AV无码专区亚洲AV人妖| 在公交上被灌满白浆的视频| 无码精品尤物一区二区三区| 男人扒开女人下面猛进猛出| 国产又粗又猛又黄又爽无遮挡| YYY6080韩国三级理论| 亚洲欧美日韩精品久久亚洲区 | 麻豆国产成人AV高清在线| 国产精品免费AV片在线观看 | 久久香蕉综合色一综合色88| 国产成人综合久久亚洲精品| 18禁强伦姧人妻又大又| 亚洲AV无码AV男人的天堂| 青青青伊人色综合久久| 九九国产精品无码免费视频| 国产MV在线天堂MV免费观看| 18禁无遮拦无码国产在线播放| 亚洲AV片不卡无码一| 日本成熟少妇喷浆在线观看| 久久久亚洲欧洲日产国码ΑV | 宝宝锕~进去就不痛了在线观看| 亚洲熟妇AⅤ无码一区二区| 熟妇人妻不卡中文字幕| 男女作爱全部免费观爱| 机密重案之致命诱惑| 丰满的女房东6剧情| 2019在线人妻中文字幕| 亚洲AV综合色区| 少妇人妻偷人精品无码视频| 女人什么姿势下面最紧| 精品国产乱码久久久久久蜜桃免费| 丰满熟妇人妻中文字幕| 99热成人精品热久久6| 亚洲欧美成人A∨在线观看| 天美传媒MV免费观看软件的特点| 欧美18ⅩXOO极品| 精品国产一区二区三区久久影院| 国产成人AV综合久久| www.xx欧美大鸡巴| 艳妇臀荡乳欲伦交换H漫画小说| 午夜不卡久久精品无码免费| 日本无套内射ⅩXXXX人妻在线| 蜜桃av秘 无码一区二区三区| 黑人又大又粗又长欧美网站| 国产成人AV在线综合| 爆乳女教师 高清BD| 中国蓝CHINABLUE| 亚洲国产人成自久久国产| 无码超级大爆乳在线播放| 人人妻人人妻人人人人妻| 蜜臀AV在线播放| 久久国产精品成人片免费| 国产男男Gay做受×Xx男| 东京无码熟妇人妻AV在线网址| BGMBGMBGM老少配| 岳的奶大又白又紧| 亚洲精品第一国产综合亚AV| 午夜福利一区二区三区在线观看| 色爱无码AⅤ综合区| 欧美人妻少妇精品久久黑人| 老司机午夜精品99久久免费| 精品人妻少妇一区二区| 国产午夜免费啪视频观看视频| 亚洲成在人线AV品善网好看| 小寡妇高潮喷水了| 中国猛少妇色XXXXX| 性生大片免费观看性| 丝袜护士无码视频一区二区三区| 人妻人人澡人人添人人爽人人玩| 免费无遮挡色视频网站| 久久综合给久久狠狠97色| 精品久久久久久久无码| 国精品无码一区二区三区在线蜜臀| 国产AV一区二区三区无码野战 | 久久麻豆成人精品| 回民丰满少妇XXX性| 国产乱子伦农村叉叉叉| 国产V综合V亚洲欧| 成人影院YY111111在线| 被村长狂躁俩小时玉婷| 午夜爽爽爽男女污污污网站| 少妇私密会所按摩到高潮呻吟| 日本大学SGU大二大三| 欧美在线 | 亚洲| 女儿男朋友是妈妈的爱豆的电视剧 | 国产精品xxxxav| 给丰满少妇按摩到高潮| 大象成品W灬源码1| 成人国产一区二区三区精品| 啊~每一次都撞到最里面| FREEⅩ性CHINESE中国| 99久久99久久精品免费看蜜桃| 18性欧美XXXⅩ性满足| 18禁免费无码无遮挡不卡网站 | 精品无人区一线二线三线区别| 火车上荫蒂添的好舒服视频| 河南少妇凸BBWBBW| 国内精品伊人久久久久影院对白| 国产无遮挡又黄又大又爽| 国产美女高潮流白浆视频| 国产免费久久精品国产传媒| 国产女人高潮抽搐喷水嗷嗷叫| 国产精品自在拍一区二区不卡| 国产乱人伦偷精品视频| 国产美女mv一区二区竹| 国产午夜精华无码网站| 国内精品伊人久久久久妇| 好喜欢你呐[校园] 里恩ER| 皇上御花园HLH| 精品无码国产自产拍在线观看蜜| 久久99热狠狠色精品一区| 久久久噜噜噜久久中文字幕色伊伊 | 亚洲AV成人午夜亚洲美女| 亚洲AV永久无码精品桃花岛 | 国产好大好硬好爽免费不卡| 国产麻豆精品精东影业AV网站| 国产一国产二国产三国产四国产五| 国语精品自产拍在线观看网站| 狠狠色狠狠色综合久久| 久久99老妇伦国产熟女高清| 久久丫精品国产亚洲AV| 妺妺窝人体色聚窝窝www偷窥| 国产精品亚洲精品日韩已方| 国产精品无码A∨麻豆| 国产亚洲精品无码专区| 精产国品一二三产品区别视频手机 | 亚洲成AV人在线视| 亚洲日韩成人AV无码网站| 永久AV狼友网站在线观看| 18禁强伦姧人妻又大又| 扒掉内裤露出打嫩嫩的屁股| 顶级RAPPER潮水日本| 国产精品成熟老妇女| 国外免费IPHONE网站| 久久99精品国产99久久6尤物| 麻豆国产成人AV高清在线| 欧美日韩一区二区在线视频精品| 人人玩人人添人人澡东莞| 熟妇人妻无码一区二区三区|